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For 2D percolation we slightly improve a result of Chayes and Chayes to the
effect that the critical exponent § for the percolation probability is strictly less
than 1. The same argument is applied to prove that if ¥(¢):={(x, y):
x=rcost, y=rsinf for some r20, or 0<¢} and Plo):=
lim,, , [log(p—p. )1~ 'log P, {O is connected to oo by an occupied path in
P(p)}, then P(¢) is strictly decreasing in ¢ on [0,2n]. Similarly,
lim, , [ —logn]~'log P {O is connected by an occupied path in #(¢) to the
exterior of [ —n, n] x [ —n, n] is strictly decreasing in ¢ on [0, 2r].

KEY WORDS: Percolation; critical exponent for percolation probability;
percolation in sectors; strict inequalities.

1. INTRODUCTION AND STATEMENT OF RESULTS

Consider a matching pair of periodic graphs (4, 4*) imbedded in R? (see
Ref. 7, Chapter 2 for this terminology). For instance % could be Z2 and %*
the graph with the same vertex set as Z2, but with edge set the edges of 7>
plus all the diagonals of the unit squares [ny,n,+1]x [ny, ny+ 17, n,,
n, € Z. Now choose each vertex of %, independently of all others, occupied
with probability p and vacant with probability ¢ :=1— p. This model is
called site-percolation on %. In the above-mentioned example we obtain
site-percolation on Z?, and this will be our prime example. Tt is well known
that bond percolation on Z* or many other two-dimensional lattices can
also be formulated as site-percolation on one graph of a matching pair (see
Ref. 7, Section 3.1). Our results here apply to all such examples that satisfy
condition (1.4) below. P, will denote the probability measure on the con-
figurations of occupied and vacant sites of 4, corresponding to the above
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model. A path on ¥ is called occupied if all its vertices are occupied, and
A — B (in C) means that there exists an occupied path from some vertex in
A to some vertex in B (with all its vertices in C). W, the occupied cluster of
0, is given by

W={y:0- y}

(Here we tacitly assume that O, the origin, is a vertex of ¢; if this is not the
case, one can take for W the occupied cluster of any fixed site wy). # W
denotes the number of vertices in W, and the percolation probability is
given by

6(p)=P,{#W=0o0}
The critical probability is

p.=sup{p:8(p)=0}

and we write P, for P, .
Chayes and Chayes"? recently proved that for some constant?
C,=C,(%)>0,

Hp)-0p)=Clp—p.), P>p. (LL)

(The result of Ref. 1 holds in all dimensions.) If one makes the commonly
accepted assumptions

0(p.)=0 (1.2)

and

1
= lim ————log 8 exists 1.3
h rinlog(p—p) ) (1)
then (1.1) implies f<1. Our main result implies that § <! under the
following condition:

The x or y axis is an axis of symmetry for 4 and ¥*, and in
addition, ¢ and %* are invariant under rotation (around O)
over a fixed angle 8, ¢ (0, 7). {1.4)

Our result is formulated in such a way that we do not have to assume
(1.3). It is known, though, that (1.2) follows from (1.4) [see after (2.9)
below ].

2 C, will denote a strictly positive and finite constant whose precise value is of no significance
for our purposes. The value of C; may change from one appearance to another.



Critical Exponents in 2D Percolation 1033

Theorem 1. If the two-dimensional matching pair (¢, ¥*) satisfies
(1.4), then there exist constants 0 < C,;=C (%) < o0 and f= (%) <1 such
that

0p)=Ci(p—p), p>p. (1.5)

It is possible to use the proof of Theorem 1 for several related strict
inequalitics. We make the following definitions:

F(@)={(x, y):x=rcosB, y=rsinfforsomer>0,0<0<¢}
(¥ is a sector of the plane),
0(p. )= P,{0 - o0 in F(e)}
[note 8(p) = 0(p, 21)],
Sny=[{—nn]x[—n,n]
S(n)=(—n, n) x (—n, n) =interior of S(n)
S¢(n) = R?\ S(n) = complement of S(n)
3S(n) = (topological) boundary of S(rn)
g, n)=P,{0 - S5(n)in F(p)}
n(n)={(2m, n)= P, {0 — S°(n)}

Theorem 2. For 0<9, <@, <2n there exist constants 0 < C,=
Clo,, ®,, %)< oo such that

H(p’ (pl)
‘_‘—_‘gc — Fe C3s > 4 16
0p. o) AP —p.) p>p (1.6)
é’(n’ QDI)
<C n—Cs 1.7
(m o)~ (L7
Moreover, for some 0 < C,= C{%) <

o(p, : ~
(f)l(]p(f)<cs(p~pc)c7 uniformlyin p>p., 0<e@<2zx (1.8)

and

S0 9) = uniformly in 0< ¢ <2n (1.9)

7(n)
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Remark 1. 1f one assumes that

Blo}:= log 8(p, @) exists

plp log(p—p.)
then (1.6) and (1.8) say that B(¢) is strictly decreasing in ¢ on [0, 27), with

a jump at 2n. Relations (1.7) and (1.9) have a similar interpretation for

lim —I——IOg {(n, @) {1.10)

n— O 1
provided this limit exists.

Remark 2. If the limits in (1.10) exist, they depend on the imbedding
of 4 into R® For example, (1.7) implies that

P_{O — §¢(n) in the first quadrant}

has different asymptotic behavior for the two imbeddings of the trianguiar
lattice shown in Figs. la and 1b.
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Fig. 1.
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In fact, {(n, n/2) for the imbedding of Fig. 1b corresponds to {(n, n/3)
for the imbedding of Fig. 1a. It is not clear how one should define a limit
analogous to (1.10) that is independent of the imbedding. It is even less
clear that universality of the ¢ dependence will hold for these limits, once
one has a good definition. J. T. Chayes and L. Chayes (private com-
munijcation) have suggested that the definitions given above will lead to
universality, provided the graphs can be imbedded in such a way that the x
and y axis are axes of symmetry and

P_.{the left and right edges of the square S(x) are

connected by an occupied path in S(n)} -3 (n— )

and the same limit holds for connections between the top and the bottom
edge.

Remark 3. For %=77 f(n) should equal the exponent f, of
Christou and Stinchcombe®’ for the percolation probability of sites near
the edge for percolation in a half-plane. Various approximations for f§, are
given in Ref. 4.

Remark 4. Results quite similar to Theorems 1 and 2 hold when
S (@) is replaced by the more general sector

L@, 9o):=={(x, y):x=rcosf, y=rsinfforsomer>0, o, << 0o+ ¢}

in the definitions.

2. PROOF OF THEOREM 1 FOR SITE PERCOLATION ON 72

For simplicity we always take % = Z* in this section. This is the special
example mentioned in the introduction. In the next section we explain what
additional arguments are needed to cover more general situations.

The proof of (1.1) in Ref. 1 was based on the differential inequality

1
0(p) S; [6*(p)+0(p) 0'(p)] (2.1)
We shall obtain (1.5) by improving (2.1) to
2
Otr) < [6*(p)+0(p) O'(P) (P~ P,  pP>p. (22)

for some ¢ > 0. Clearly, (2.2) will imply (1.5) with =1 —¢. As explained in
Remark 5, it is easy to see that (2.2) will follow once we have Proposition 1
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below. Here a circuit on %* is a path (v, ef, v,,.., ef, v,) on ¥* with
v, #v; for all i# j, except for vo=uv, (see Ref. 7, pp. 11 and 29 for details).

Proposition 1. Let x be a vertex of 4 (and hence of ¥*) and ¥* a
circuit on ¥* through x, with all its vertices other than x vacant. Then for
p>p. and p— p,_ sufficiently small

P,{3 two disjoint occupied paths on ¥ from neighbors
of x to co and outside €*}

2 .
<; (p—p.)° 0(p) P,{3 an occupied path on ¥ from

a neighbor of x to oo and outside €*} (2.3)

Remark 5. To obtain (2.2) from this, one follows the proof of Ref. 1.
The x will be the last pivotal point (or the last articulation point) for the
event {0 — oo} if and only if there exists a circuit C* on %* through x
with O in its interior and with all its vertices other than x vacant, and if, in
addition, there exist three disjoint occupied paths on %, one from O to a
neighbor of x in the interior of C* and two from a neighbor of x to « in
the exterior of C*. By taking C* to be a minimal circuit through x with O
in its interior and with all its vertices other than x vacant, we can apply
Lemma 1 instead of Eqs. (11) and (12) in Ref. 1 to estimate for fixed ¥*

P,{x is the last pivotal site for the event O — oo
and the above minimal circuit C* equals €*}

= P,{a neighbor of x is connected to O inside ¢*
and €* is minimal vacant circuit through x and
surrounding O (except possibly at x)}
- P,{3 two disjoint occupied paths from neighbors of
X to oo, outside €*}

< P,{x is pivotal for the event O — oo and the minimal

2
circuit C* equals €*} . (p—p)o(p)

After summing over all possibilities €* for C*, one can complete the proof
of (2.2) exactly as in Ref. 1. |

Unfortunately, we must become more technical to explain the proof of
Proposition 1. First we need the crossing probabilities of rectangles. On
% =77 an occupied horizontal crossing (or occupied crossing in the
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l-direction) of the rectangle [a,, a,]x [b,, b,] (a;, b,€ Z) is an occupied
path (vg, €;,..., €,, 0,) 00 % with v, on the left edge {a,} x [b,, b,] and v,
on the right edge {a,} % [b,, b,], while all other vertices v;, 1 <i<n—1,
lie in the interior (a,, a,)x (b, b;). Occupied vertical crossings (or
occupied crossings in the 2-direction) on ¥ are defined similarly. Finally,
vacant crossings on ¥* are defined by replacing “occupied path on 4™ by
“vacant path on ¥*.” Now define for i=1,2

a((a, b); i, p)
=o((a, b);i, p.9)

= P,{3 occupied crossing on % of [0, a] x [a, 5] in the i-direction }
(2.4)
a*((a, b); i, p)

=0*((a, b);i, p, )
= P,{3 vacant crossing on ¥* of [0, a] x [0, b] in the i-direction }
(2.5)

The principal fact we need is that crossing probabilities of rectangles
that are not too large (with respect to the correlation length) nor too
elongated are bounded away from zero. To make this precise, we first
define the correlation length

L(p) :=min{n:o((n,n); 1, p)=1—e,, p>p,.

Here ¢, is some small, strictly positive number whose precise value is not
important here. The most important property is that ¢, >0 can be chosen
such that there exist constants §, for which

o((kn, n); 1, p)= 6y, (n, kn); 2, p) 2 6,

ot (2.6)
a*((kn, n); 1, p)26,, o*((n, kn); 2, p) =6,

uniformly in »< L(p) (for any fixed k> 1). It is shown in Ref. 8, Section 2
that such a choice of ¢, is possible, and Corolilary 2 of Ref. 8 also justifies
calling L(p) the correlation length (see also Ref. 2, Proposition 3.2 for
another justification). Note that the continuity of ¢ in p implies that for
p=p. (2.6) will hold uniformly for all ». This can also be proved
directly.""°'?) Thus, at p_ the correlation length should be taken as infinity.
In fact, the correlation length diverges as p — p., and another important
property we shall need is

Lp)=C,lp—pd~" (2.7)

822/46/5-6-16
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for some C,>0. Equations (4.5} and (4.6) of Ref 8 imply L(p)=>
C,|p—p. "% which would suffice for our purposes here, but Chayes et
al.® have given a much more direct and simple argument for (2.7). Finally,
we note that if one combines four crossings to construct a circuit in an
annulus as in Refs. 10-12, then one obtains for k=2

P {3 occupied circuit on ¢ surrounding S(n) in S(kn)\S(n)}

>(6,)% n<L(p) (2.8)
P,{3 vacant circuit on 4* surrounding S(xn) in S(kn)\ S(n)}
>(84)", n<L(p) (2.9)

We note here that one easily obtains from (2.9) that for p= p, there are
infinitely many vacant circuits surrounding O, a.e., [P.]; this implies
0(p.)=0 (compare Refs. 10 and 11 or Ref. 7, p. 178).

Another ingredient of our proof is an inequality for “disjoint
occurrence of two events.” A first version of this was proved by
Hammersley'> [cf. Ref. 5, Eq. (25)], and the method of proof has been
rediscovered repeatedly (see Ref 13 for references). To formulate the
inequality, we have to bring in an independent copy of our percolation
system. More specifically, let 7~ be the vertex set of 4 and set

Q=0'=T] {-1, +1}

ve ¥y

A typical point @ (') of Q (£2') is a sequence {W(v)},ey ({@'(V)},ey )
The value w(v)= +1 (—1) corresponds to v being occupied (vacant). P, is
the product measure on 2 with

P{ow)=+1}=p=1—-P,{ov)= —1}, vey

We define P}, in the same way as the product measure on Q' with

Plow'(w)=+1}=p=1-P,{0'(v)= —1}
For any event B« Q write B’ for its copy in Q’, ie.,

B ={w'eQ’:3we Bsuch that w'(v) = w{v) forallve ¥’} (2.10)
For a fixed e Q2 and K< ¢, [@ ]« denotes the cylinder
[(0]x={weQ: w(v)=d(v), ve K}

Similarly for fixed @' e Q'

[@]xk={w el v =0 {w),veK}
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We say that two events 4 and B of  occur disjointly if 4 B occurs, where

A-B:={weQ:3K, Lc¥ suchthat Kn L=
and [0]x < 4, [0], = B}

This terminology should be reasonably intuitive; we interpret [w], < A4 as
“A occurs because of the coordinates of @ in K”; A+ B then is the event
that A and B occur because of disjoint sets of coordinates. We define in a
similar way for two events 4 in Q and B’ in Q' the event 4o B' in 2 x Q' by
AoB = {(w, ®')e2xQ" 3K, L < ¥ such that
KnL=Cand [w]xcA4, [w0'], =B}

We state the desired inequality as a separate lemma.

Lemma 2. If 4 and B are increasing events of £, each depending
on finitely many coordinates only, and B’ is the copy of B in Q" as defined
in (2.10), then

P{A°BY<P,xP,{A°B'} (2.11)

(Here P, x P, is the product measure of P, and P, on 2x Q")

Proof. We can represent the increasing event 4 as a finite union
{J A4;, with A, of the form

A;={weR: w)=1forveK,}

The cylinders A; can be chosen maximal, or equivalently the K, = ?" can be
chosen minimal, with the property 4;,c 4. If B is also written as a union
{J B, of maximal cylinders in B, with

B={weQ: w@)=1forvel,}

then it is easy to see that'®

AOB:U(AI'OBJ'): U (AiOBj): U (AimBj)

" K,-mﬂ:@ K,-nlf:f=;z

Therefore, (2.11) is immediate from the inequality (3.6) in Ref. 13. [Instead
of (3.6) in Ref. 13 one can also use the results of Campanino and Russo,
McDiarmid, or Riischendorf cited there.] ||

We can now outline the proof of (2.3), at least when the restriction
that the paths liec outside €* is dropped. (This can be viewed as a
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degenerate case when €* consists of the vertex x only.) By periodicity we
may assume x = 0. Let o/ be the annulus S(2°)\S(2'~'). An Q-occupied
(€'-occupied) path is a path (vy, €, €,,0,) On ¢ with w(v,)=1
[w'(v;)=1] for 0<i<n Now let

&= {3 an Q-occupied circuit surrounding S(2¥ ') in
< and an Q-occupied circuit surrounding S(2¥+ ')
in oy} (2.12)
and let
J={j=1:2Y**< L(p) and & occurs}

&’ and J' are defined in the same way for Q’'-occupied circuits, and we
further define

N = cardinality of Jn.J’
Our first step will be the easy estimate
P,xP{N< —C,log(p—p.)} <12 (2.13)
for a suitable C, >0 and p — p, sufficiently small. We now take

A = B={aneighbor of O is connected to oo by an
occupied path outside €*} (2.14)

The left-hand side of (2.3) is now P,{4 - B}. Even though 4 and B depend
on infinitely many sites, Lemma 2 and an obvious limit procedure show
that the left-hand side of (2.3) is at most

P,xP,{A-B'}<2P,xP,{A°B and N> —C,log(p—p.)} (2.15)

The inequality here follows from (2.13) and the Harris-FKG inequality
(Ref. 7, Proposition 4.1) because A-B’ and {N> —C,log(p—p.)} are
both increasing events in £2 x Q'. We shall estimate (2.15) by conditioning
on J, J' and on certain circuits in «4; and ;. ,, j€ JnJ'. When & occurs,
let %, be the smallest Q-occupied circuit surrounding S(2¥ ') in «4;, and
D, + , the largest Q-occupied circuit surrounding S(2¥*') in o4, , ,. Define
%; and Z; in a similar way as extremal €'-occupied circuits when & occurs
(see Fig. 2 for an illustration when & n &, occurs). The existence of such
smallest circuits €;, ¥; and largest circuits &;, 2; can be demonstrated by
the method of Lemma 1 of Ref. 6 or Proposition 2.3 of Ref. 7. For any cir-
cuit ¥ define

¢ = interior of €, ¥° = exterior of €, E=¢u%
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Fig. 2. Tllustration of & n&}. The squares (starting at the innermost square, but not drawn
to scale) are S(2¥1), S(2¥), S(2¥*"), and S(2¥*?). The solid circuits are %3, and @5;, , and
the dashed circuits are €5 and 9, , ,.

Then on & we necessarily have ;< @3j + 2, and it follows from the method
of Lemma ! in Ref. 6 or Proposition 2.3 in Ref. 7 that conditionally on &,
%,;, and Py, , , the families

(o) ve Dy €5} (2.16)

and
{o):vet,vPs, ,}u{w () uey}

are independent. Moreover, the conditional distribution of the family in
(2.16) is equal to the unconditional distribution P,. Now condition on the
set of indices J and the occupied circuits %5, %y, ,, jeJ. For the time
being drop the restriction concerning €* in (2.3} and in (2.14). Let J con-
sist of j(1) < j(2) < --- < j(v). Then A occurs if and only if there exist the
following collection of Q-occupied paths (see Fig. 3):

an 0- occupled path r, from a neighbor of O to %, that
lies in (631(1, except for its endpoint on %y, (2.17)

an Q-occupied path s, from &y, to @, , , that lies in
931(1) Hm%w) except for its endpoints on %;;; and
93](1)+2, [= 19 ) (218)
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Fig. 3. Given the occupied %’s and Z's, a neighbor of O is connected to o if and only if
there exist occupied paths ry;, and s;, as indicated. Note that the endpoint u of ry on %y,
and the initial point v of s, are connected by a piece of €, ,.

an cQ-occupied path r;;, from @31-(.,-) 4o 1O ‘63{-(,- + 1) that lies in
Gyjir 1y N DS54 2 €xcept for its endpoints on Gy, 1)
and Py 40, i=1,.,v—1 (2.19}

an Q-occupied path ry,, from Zy;,,,, to o in 25, .,
except for its initial point on %, , » {2.20)

It is obvious that such Q-occupied paths must exist for 4 to occur. In the
opposite direction, once such paths exist, they can be connected by pieces
of the 2-occupied circuits %5; and 2, , , to make an 2-occupied path from
a neighbor of O to oo (see Fig. 3). In exactly the same way, we sec that B’
occurs if and only if there exist Q'-occupied paths #'(i) and s'(i) as in
(2.17)-(2.20) with ¢ and 2 replaced by ¢’ and 2’ and j(i) by j'(i). For
A~ B’ to occur, we must even be able to pick the {r,, 5;,} disjoint from
the {r}), 5} }- We shall only insist on s; being disjoint from s5; when je
JnJ'. This then leads to the following inequality whenever the cardinality
of JnJ' is at least —C,log(p—p.):



Critical Exponents in 2D Percolation 1043

P,xP,{AB and N> —C,log(p— p )|, T, €3y Dsj01y + 2>
J)ed, ngj’(i), @'3_;’({)4»27 J EJ,}
<P, x P,{ry, riy, 5 exist as in (2.17)—(2.20)
and their analogues rg, #},, and s}, exist
n such a way that s, is disjoint from s; when
JeINT VLT, €y Dajiiy 25 ) E D,
s Dy s2s J(DES ) (2.21)

When JnJ' contains fewer than — C,log(p — p,) indices, then the left-
hand side of (2.21) is zero. Now, by the independence statement at (2.16)
and its analogue for primed quantities, the right-hand side of (2.21) can be
written as the product of the following five factors:
P,{all the #’s required by (2.17), (2.19), (2.20)
exist |, By Dajiiy 425 J0) eJ} (2.22)

[T P,{s; exists as required by (2.18)|J, 5;, D55} (2.23)
jeJ\J

P,{all the ' required by the analogous of (2.17), (2.19),
and (2.20) exist | J', €%y Dyyay.as J (D ET} (2.24)

11 P,{s; exists as resuired by the analogue of
e\

(2.18)| 7, €%y, Dy} (2.25)

[l P,xP,{s;and s/ exist and can be chosen
jeJ' nJ

disjoint| J, J', Gy, Dy, 5, Cyo D2} (2.26)

Assume now that we can prove the following estimate for some constant
0<i<t:
P, x P;,{sj and s; exist and can be chosen disjoint | J, J',
(gBj’ 93j+2> ,3_1'9 /3j+2}
< AP,{s;as required in (2.18) exists | J, €y;, s, » |
- P,{s; as required by the analogue of (2.18)
exists|J', €5, Dy, 0} (2.27)
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We then obtain that

P,x P, {A>Band N> —C,log(p—p,)}
< [product of (2.22)-(2.25)] A~ C2loetr—ro)
- [1 P,{s as required in (2.18) exist | J, €y;, Zs; >}
jednJ

- [T P,{s; as required by the analogue of (2.18)
jeJnJ
exists | J', €%, D%, 2}
= A1 =PIP AT, By, Dy 12 J) €T}
CPL{B | By Doty 20 S (D ET')

Taking expectations with respect to J, J' and all the 4, 92, ¥’, and Z’, we
finally get

P,{AoB} <24~ Cloxv=rIp {4} P (B}

2 ~
<= (p—p)2le

- P,{a neighbor of O is connected to o0 } 6(p)  (2.28)

since

P,{B}=P,(B) <1—1)6(p)

To complete the proof of (2.3) without the restriction concerning $*
we must therefore prove (2.13) and (2.27), which we do in the next two
lemmas.

Lemma 3. The result (2.13) holds.

Proof. This is easy by virtue of (2.8) and the independence of the o
and the o’

P x Py {8 8]} = [P, (811> (55)"

p

In addition, the number of j with 2¥*2< L(p) is at least —C, log(p — p.).
by virtue of (2.7). Since the §;n &/, j=1, 2,..,, are independent, (2.13) now
follows with

Cz = %(54)16 C3

from Chebyshev’s inequality for the binomial distribution, provided L(p) is
sufficiently large (or equivalently p sufficiently close to p.). |
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Fig. 4. (—) £2-Occupied paths and (~-) Q-vacant paths (except at endpoints on %y; and
241 »). Any occupied connection from %;, to Zy;, , has to lie between ¥ and ¢§. Only K is
shown, but not K, K,.

Lemma 4. The result (2.27) is valid.

Proof. Clearly it suffices to prove

P,x P,{there exist an Q-occupied connection s, as
required in (2.18) and an Q’-occupied connection s
from %% to 2., as in the analogue of (2.18), but any
two such s; and s; intersect|J, J', %, %y, s
54252 Cy>0 (2.29)

(We can then take A=1-—C,.) To prove (2.29), we show that there is a
strictly positive probability that s; exists, but that it is forced to pass
through a certain corridor K, and similarly for s; and a corridor K"
Moreover, we choose these corridors such that any s;< K and s5; = K’ must
intersect. For instance, we can take K= [2¥V 1, 2¥+2 ] x [—-2¥ 1 2¥ 1]
by assuming the existence of an Q-occupied path § connecting €;; to Zs,, 5,
two 2-vacant paths ¢, ¢F on ¥* (in obvious terminology) connecting %;;
to 9y, ,, and an Q-vacant path t* connecting (¥ to ¢} in =4, as
indicated in Fig. 4 (the endpoints of ¢¥, ¥ on %;, and 25, » will not be
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vacant). The paths ¢}, §, and ¢5 in Fig. 4 are pieces of horizontal crossings
of

Kl = [23j71, 23j+2] % [_23j—~ l’ —~23j7 L _+_23j72]

[e = [23jA1, 23j+2] x [~_23j— 1 + 23j72) 23/'— 1_ 23j—2]

K2 i [23}'— 1, 23j+2] x [23j7 1 _ 23j~2’ 23]'— l]
respectively. § can serve as s, in this situation, but no occupied s, can inter-
sect any of the vacant paths ¢*, 7, ¥, and therefore any such s, must lie
“between 1§ and 13 It is easy to see that given %y and %, ,, the
probability of the occurrence of §, t*, ¢, t¥ as above in the Q-system is at

least i
P,{3 occupied horizontal crossing of K}

- {3 vacant horizontal crossing of K }

- P,{3 vacant horizontal crossing of K, }

- P,{3 vacant circuit in =4, , , surrounding S(2%)}
>(016)°(04)" (2.30)

[by (2.6), (2.9), and the Harris-FKG inequality ]. We do not write out the
details for the corridor K, but Fig. 5 should convince the reader that the

T

a)3j+2

Fig. 5. (—) Q'-Occupied paths and (- -) ©'-vacant paths (except at their endpoints on %%,
and 9%, ,). (—--) A candidate path for s;. Any such path must intersect the § of Fig. 4.
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existence of suitable Q’-vacant paths will force s5; to contain an £'-occupied
vertical crossing of [2%,2¥*']x [—2¥Y~1,2%~1]. Any such s/ must inter-
sect any s; connecting %;; to %, , in the situation of Fig. 4. We leave it to
the reader to verify that the existence of paths such as in Fig. 5 has a con-
ditional P, probability (given %3 and 25, ,) that is bounded away from
zero. This, together with (2.30) and the independence of the @ and Q’
systems, implies (2.29). |

Proof of Proposition 7. We now show what changes have to be
made in the proof of (2.3) in the general case when the restriction of the
paths to the exterior of €* is imposed. Again we assume x = 0. We define
A and B as in (2.14). We also define

io = max{i: €* intersects 5(2)}

where 4S(n) denotes the (topological) boundary of S(n). We deal
separately with the two cases

log L(p)
g<—=—" 2.31
ST log 2 ( )
and [cf. (2.7)]
log L
o> 08 L) e (p— )= (2.32)
2log?2

If (2.31) holds, we can use essentially the same proof as before. We
define & again by (2.12), but only for 3j> i, 4 1, and simularly for &;. Also,
@y €%y Ds;12, and D5, are defined as before, as long as 3j> i, + 1. This
time we take

J={j:3j>iy+1,2Y">< L(p), and & occurs }
J={j13 >io+1,2Y T*< L(p), and &} occurs }

N is still the cardinality of JnJ’, and the rest of the proof needs no change.
We merely need to observe that (2.13) still holds, by the same proof as in
Lemma 3, because the number of j with 3j>i,+ 1, 2¥ "2 L(p) is still at
least —C5log(p— p,) if (2.31) holds.
If (2.32) holds, we use simply
P{Ad°B}<P,xP,{A-B}<P,xP,{AnB}=P,{A} P,{B'}

{by Lemma 2 and 4- B’ < 4 x B), and then we prove

2 ,
P};{B’}=Pp{3}<;(p—pc)b 0(p), p>p. (2.33)
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Clearly these two inequalities will imply (2.3), so that it suffices to prove
(2.33). Note that by (2.14), P,{B} is the probability that a neighbor of O is
connected to oo outside %*, while p—'0(p) is the probability that a
neighbor of O is connected to co. Thus, (2.33) says that [under (2.32)] the
restriction on the connecting path to lie outside €* cuts down the
probability by a factor 2(p — p.)".
We can ignore the Q system for (2.33). We therefore do not need &,
but we define & as before if 3j < i, — 2. Thus we set, analogously to (2.12),
for 3j<iy—2,
= {3 an Q’-occupied circuit surrounding S(2¥ ")
in o4, and an ©’-occupied circuit surrounding
SQY*Y)in sy}
J={jj=1,3/<iy,—2,2Y"*< L(p), and &; occurs }

On &;, €% is the smallest Q'-occupied circuit in o/; that surrounds
S(2¥~1), while 9%, is the largest Q'-occupied circuit in 7, , that
surrounds S(2¥*1!). All this is entirely the same as before. Again, if B’
occurs, then there must exist paths as in (2.17)-(2.20), now with primes
attached to the appropriate entities, and with the added requirement that

/

all these paths lie outside ¥*. Consequently, P,{B'|J', €%, D%, 1, j€J'} is
bounded by the product of the following two factors:
P}, {all the r' paths required by the analogues of (2.17),
(2.19), (2.20) exist | J', €0y, Djii 4 2y, J(D) €T} (2.34)
[1 {3 2"-occupied path s/ from €5 to 2, ,
jeJ’
that lies in €*° N QZQH » N (%4)° except for

its endpoints on €5 and 25, ,|J, €3, D% .5}
One can now complete the proof of (2.3) almost as before, if one proves the
following analogues of (2.13) and (2.27):
P, {cardinality of J'< —C,log(p—p.)} <3 (2.36)
and there exists a constant A< 1 such that
P,,{3 Q'-occupied path s; from €3, to 24, , , that lies
iné*n 9?'3j+2 N (%3;)° except for its endpoints
on %y and 3, ,1J, €%, Dy 0}
< AP,{3 Q'-occupied path s; from €%; to 25 , that
lies in 93,+ » N (%5)° except for its endpoints on
¢y and 95,17, €Y, 3j+2} (2.37)
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[ Note that the left- and right-hand sides of (2.37) differ only in the restric-
tion 5; < €*°.] To obtain (2.3), or rather (2.33), from these we merely have
to observe that still

P,{ry, r;, and s; exist as required by the analogues of
(2.17)-(2.20) for the Q' system | J, 6%, D%, ,, JeJ'}
< P, {3 Q'-occupied path from a neighbor of O
tOOO’J/, gj:@gj-kbje‘]/}
(with all the conditions that the paths lie outside ¥* dropped on both
sides).
The proof of (2.13) can be copied almost verbatim for (2.36) [recall

that we assume (2.32) now .
Finally we prove (2.37). Its left-hand side is at most

P,{3 Q'-occupied path s; from €, to 25, , , that does
not intersect €*|J', €%, 2%, 5}

Note also that there exists an ’-occupied path from %% to 2%, , that
(with the exception of its endpoints) lies in %3, , N (¥3,)° if and only if
there exists any £’-occupied path from €5 to 2% ,,. As in (2.29) it
therefore suffices to prove

P,{3 Q'-occupied path s/ from €5, to 23, , ,, but all

such paths intersect €* | J', €%;, 2% . ,} = C4>0 (2.38)
and the proof of (2.38) is analogous to that of (2.29). This time we prove
(2.38) by forcing s; to lie between €2’-vacant paths in such a way that s;
must cross €*. The choice of these Q'-vacant paths depends on €*. Note
that 3j+ 2 <i,, so that there exists a piece p* of €* that connects O to
0S(2¥*1). A fortiori p* crosses <, , (see Figs. 6 and 7). If p* n o4, , con-
tains a vertical crossing of T:=[2¥ 2¥*1]x [ —2% 2¥] as in Fig. 6, then
s; is forced to intersect p* as soon as there exist Q'-vacant horizontal
crossings ¢ of

Ty :=[2Y, 29+ x [—2Y, —2¥ +2¥ 2]
and ¥ of
T,:=[2Y, 29+ 1] x [2Y—2¥Y~2 2¥]

and an Q’-vacant connection t* of ¢t} and (¥ in 4, ,\ T, where

T: [23j7 23j+1] % [_23j+23j—2, 23j__23j—2]
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-7 j T
(I 5(23\]) \‘ ‘/ // 2
R

!
{ ,
N \L_/—Apossible sj

£*\ /
\ - %~
‘ H SRS
‘\ ] N S
3 s ’
\\ o2 - o .
AN - ]

Fig. 6. Tllustration of Q'-vacant paths ¢, 15, 1* that force s; to intersect p*, where p* con-
tains a vertical crossing of 7. (—-—) The path p*.

(Note that T=T, U T'U T,.) In this situation (2.38) follows by an estimate
similar to (2.30). The same argument works if p* contains a horizontal
crossing of T(n/2) or T(3n/2), or a vertical crossing of T(xn), where T(¢) is
the image of 7 after (counterclockwise) rotation over an angle ¢.

If p* does not contain a crossing as above of any of T, T(n/2), T(x),
or T(3n/2), then one easily checks that p* cannot intersect T as well as

A}

)
rik
't
i

Y o e =

Fig. 7. Tllustration of Q'-vacant paths tf, ¥, t* that force s to intersect p*, where p* does
not intersect T(n)u T(3n/2). (—-—) The path p*. (—) A possible s;.
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T(n), nor T(n/2) as well as T(3xn/2). [E.g., in the first case p* would have
to cross T(m/2) or T(3n/2).] In particular, p* can intersect only two of the
four rectangles. Assume, for the sake of argument, that p* does not inter-
sect T(n)uw T(3n/2), so that p* contains a piece that connects the union of
the top and right edges of S(2¥) with 4S(2¥*") in o4, |\ T(n) U T(3n/2).
Figure 7 now illustrates how one can choose £2’-vacant paths ¥, ¢}, and r*
to force s; to wind around from T(37/2) to T(3n/2) so that it must intersect
p*. We leave it to the reader to show that the P,-probability for the
existence of paths ¥, t¥, 1*, and s/ is bounded away from zero [by virtue
of (2.6)], so that (2.38) holds in all situations. |}

3. COMMENTS ON THE REMAINING PROOFS

Comments to Theorem 1. What goes wrong with the proof of
Section 2 when % is not Z?? Nothing, as long as  is planar. However, if
is nonplanar, the proofs of Lemma 4 and (2.37) break down, because s;
may cross s; or p* without having a vertex in common with s; or p*. Such
mtersectlons of paths are allowed in A-B'. For 4 and B’ to occur
disjointly, we merely require that they occur because of disjoint collections
of sites of 4. The proof of Theorem 1 does, however, go through essentiaily
unchanged for any planar graph 4. Only very minor technicalities may
need to be changed for a planar ¢ that is not Z°, due to the fact that a
horizontal crossing of [a,,a,]x[b,b,] with a;,, b,eZ does not
necessarily have its endpoints on the left and right edges of this rectangle.
Such a crossing will therefore be a path from [a;,— A4, a,]x[b,, b,] to
[a,, a,+ A1 x[by, b,] for some constant A= A(¥) (which is an upper
bound for the lengths of the edges of ¢). The arguments in Ref. 7 have been
carried out in this generality, and we shall regard the case of planar ¢ as
proven, without going into further technicalities. The restriction to planar
% is, however, serious. It would rule out, for instance, the matching graph
of 7> and the covering graph of Z2 The latter corresponds to bond per-
colation on Z? (see Ref. 7, Sections 3.1 and 2.5).

It is easy to save (2.3) by going over to the planar modification 4, of
% as explained in Ref. 7, Section 2.3, This is done by adding a so-called cen-
tral vertex in each face of the mosaic, .# say, on which (4, 4*) is based,
and which is close-packed for . These central vertices are taken occupied
with probability 1. One obtains a similar planar modification ¥} by
inserting a vacant central vertex in all the faces of .# that are close-packed
1n %*. Now the proof of Section 2 can be applied to ¥, to give us (2.3) on

. This does not immediately give us (2.2), though. What we do obtain
form (2.3) on &, by the proof of Ref. 1, is
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6(p) <Iz) [62(1)) +(p—p)O(p) Y P,{two neighbors of

X €%y
x are connected by occupied paths on &, to O

and oo, respectively, and there exists a circuit €*

on %% all of whose vertices other than x are

vacant, and O € interior of €* }:| (3.1)

(compare Ref. 7, Proposition 2.1). Any vertex x of ¢, with the properties
between the braces on the right-hand side of (3.1) is pivotal for the event
{0 - o0 }. However, the sum over x on the right-hand side of (3.1) is not
equal to 6'(p) [as was the case in Ref. 1, Eq. (7) and following lines]. 6'(p)
is only the sum over those x that are vertices of ¥ itself, since the other
(central) vertices of 4, are always occupied—the status of these latter ver-
tices is not influenced by p [compare Eq. (4.22) in Ref. 7]. We nevertheless
will obtain a version (2.2) by showing that if x is a central vertex of %, in
the face F of the mosaic .# on which (¥, ¥*) is based, then there exists a
vertex y of % on the perimeter of F such that

P,{x has the properties in (3.1)}

M
<C, <1fp> P,{y has the properties in (3.1)} (3.2)

where M is an upper bound for the number of vertices on the perimeter of
any face of .#. Thus, (3.1) yields

2 M
9(p)<;[62<p)+cs( P ) (p— ) 6(p)

l—p

- Y. P,{yis pivotal for {0—»00}]

yey

) (p— p.) 0(p) 0'<p)]

2
<—[92(p)+cg< 4
b4 l—p

This will be enough to imply Theorem 1; the factor [p/(1—p)]¥ is
harmless, since we only have to consider p close to p, e (0, 1).

Proof of (3.2). This is quite simple, for let x be the central vertex of
F and let r; = (vy, €;,.., €,, O) be an occupied path on ¥4, from a neighbor
voof x on 4, to O, and r, = (u, f},...) an occupied path from a neighbor of
x to oo. Also, let €*=(x, gF, wF,.., wk_ |, gk, x) be a circuit on %%
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W*
semam=1

S

Fig. 8. A face F with a central vertex x pivotal for {0 — w0 }.

surrounding O and vacant, except at x. Then v, uy, W, wk_, must be
vertices of # (and hence of ¢ and %*) on the perimeter of F such that wi
and w} _ | separate vy and u, (see Fig. 8). If all occupied vertices other than
u, on the arc of the perimeter of F from w§ to wk _, through u, are made
vacant (in Fig. 8 this can only be the vertex z), then u, becomes pivotal for
{O - w}. Indeed, if w} and w}_, are the only points of ¥* on the
perimeter of F, then we can replace €* by the new circuit going from , to
wi along the perimeter of F, continuing along €* to w} _, and then retur-
ning to u, along the perimeter of F. In general we can do this by replacing
w and wk _, by wi and wj, where wf_,.., wF_| is a maximal piece of €*
between wi and w} _; that does not intersect the perimeter of F. Thus, if x
is pivotal for {O — o0}, then we can make a y on the perimeter of F pivotal
by changing at most M vertices from occupied to vacant. (3.2) is immediate
from this (cf. Ref. 9, Proposition 8). J§

Comments to Theorem 2. The form of the proof is very similar
to that of Proposition 1. Let 0< ¢, <@, <2x and let R, be the positive x
axis, and for i=1, 2 let R; be the ray

R,={(x, y): x=rcos ¢;, y=rsin ¢, for somer>0}
Define the event % (i) as (see Fig. 9)
F (i)= {3 occupied connection from R, to R, in &N F(¢,)} (33)
G=F(3)nF(3+2)

On &, we define %;; as the “innermost” occupied path with the properties in
(3.3) for i=3j, and Z;;,, as the “outermost” occupied path with the
properties in (3.3) for i=3j+2. Let

J={j=1:2Y">< L(p) and & occurs }
N = cardinality of J

822/46/5-6-17
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/R]

0

i-1

35(2 )

35(2 1)

Fig. 9. Z (i) occurs when the dashed path is occupied.

Again, for suitable C, >0,
8(p, ;) =P,{0 — 0 in F(¢;)}
<2P,{0 - win ¥(p;)and N> —C,log(p—p,)}
=2E,{P,{0 - win ¥ (p,)
and N> —C,log(p—p)IJ, (gBj’ @3_/+2,j€-/}} (3.4)
On {N< —C,log(p— p.)} the conditional probability in the last member

of (3.4) vanishes. On {N> —C,log(p—p.)} with J={j{1)< -+ < j(N)}
this conditional probability equals

PP{O "(531(1) in y)((l’i)} ) Pp{93j(/v>+2 - in S (@)}

’ H PG5y = Dy 210 F(0,)}

1<I<N

H Pp{gsj(z)+z“’(g3j(/+1)in L(p)}

I1</ISN-1
All probabilities here are calculated with ¥ and & viewed as fixed (ie,
nonrandom). One finally obtains (1.6) by proving that there exists a con-

stant A= A%, ¢, ¢,) <! such that

Pp{(g3j“"93j+zin Lo} <A'Pp{(g3j~—>@3j+2in *9)((/’2)} (3.5)
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uniformly in 6, ., %5, ,<4;,,, and j large enough. The proof of
(3.5) is analogous to that of Lemma 4. We merely have to show

P {5, — Dy, in F(¢,) but not in F(¢,)} >C,>0

We give no further details. (1.7) follows if one replaces p by p. and L(p) by
n in the above argument. (1.8) and (1.9) follow by taking ¢,=2r,
(@,)=R?% and replacing the restriction that a path r stay in #(¢,) by
the restriction that » may not cross the positive x axis.
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