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For 2D percolation we slightly improve a result of Chayes and Chayes to the 
effect that the critical exponent ~ for the percolation probability is strictly less 
than 1. The same argument is applied to prove that if 5~(q)):= {(x, y): 
x=rcosO, y=rsinO for some r>~0, or 0~<~0} and /~(~0):= 
limp+pc[log(p-pc)] -110gPcr {O is connected to co by an occupied path in 
5~(~o)}, then /~(~0) is strictly decreasing in q~ on [0,2~]. Similarly, 
lim, ~ ~ [ - l o g  n] -1  log Pcr {O is connected by an occupied path in ~(q~) to the 
exterior of I - n ,  n ] x  I--n,  n] is strictly decreasing in cp on [0, 2~]. 

KEY WORDS: Percolation; critical exponent for percolation probability; 
percolation in sectors; strict inequalities. 

1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF RESULTS 

Consider a matching pair of periodic graphs (~, ~*)  imbedded in R 2 (see 
Ref. 7, Chapter 2 for this terminology). For instance N could be 2~ 2 and N* 
the graph with the same vertex set as 7/2, but with edge set the edges of 7/2 
plus all the diagonals of the unit squares [nl,n~+ 1 I x  [n2, n 2 + l ] ,  nl, 
n2 ~ 7/. Now choose each vertex of ~, independently of all others, occupied 
with probability p and vacant with probability q := 1 - p .  This model is 
called site-percolation on ~. In the above-mentioned example we obtain 
site-percolation on 77 2, and this will be our prime example. It is well known 
that bond percolation on 7/2 or many other two-dimensional lattices can 
also be formulated as site-percolation on one graph of a matching pair (see 
Ref. 7, Section 3.1). Our results here apply to all such examples that satisfy 
condition (1.4) below. Pp will denote the probability measure on the con- 
figurations of occupied and vacant sites of ~q, corresponding to the above 
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model. A path on c~ is called occupied if all its vertices are occupied, and 
A --, B (in C) means that there exists an occupied path from some vertex in 
A to some vertex in B (with all its vertices in C). W, the occupied cluster of 
O, is given by 

w= {y: o--,y} 

(Here we tacitly assume that O, the origin, is a vertex of N; if this is not the 
case, one can take for W the occupied cluster of any fixed site Wo). # W 
denotes the number of vertices in W, and the percolation probability is 
given by 

The critical probability is 

and we write Pot for Ppc. 

O(p) = Pp{ # W =  oo } 

P c = s u p { p :  O(p)=O} 

Chayes and Chayes (~) recently proved that for some constant 2 
C1 = C~((r > 0, 

O(p)-O(pc)>~Cl(p-p , . ) ,  p >  p~, (1.t) 

(The result of Ref. 1 holds in all dimensions.) If one makes the commonly 
accepted assumptions 

0(p~.) = 0 (1.2) 

and 

then (1.1) implies 
following condition: 

1 
/3 := lira log O(p) exists (1.3) 

p,[.p, log(p - Pc) 

/3~< 1. Our main result implies that /3< 1 under the 

The x or y axis is an axis of symmetry for ff and if*, and in 
addition, a5 and ~*  are invariant under rotation (around O) 
over a fixed angle 0o ~ (0, n). (1,4) 

Our result is formulated in such a way that we do not have to assume 
(1.3). It is known, though, that (1.2) follows from (1.4) [see after (2.9) 
below]. 

2 c~ will denote a strictly positive and finite constant whose precise value is of no significance 
for our purposes. The value of C~ may change from one appearance to another. 



Critical Exponents in 2D Percolation 1033 

Theorem 1. If the two-dimensional  matching pair (~, (r satisfies 
(1.4), then there exist constants 0 < C1 = C1(~) < oe and fl = / ? (~ )  < 1 such 
that 

O(p)>~C~(p-p~) ~, p >  p~ (1.5) 

It is possible to use the proof  of Theorem 1 for several related strict 
inequalities. We make the following definitions: 

cj((p) = { (x, y): x = r cos 0, y = r sin 0 for some r/> 0, 0 ~< 0 ~< (p } 

( Y  is a sector of the plane), 

O(p, ~o)= Pp{ O--, oo in 5P(cp) } 

[note  O(p) = O(p, 2n)] ,  

s ( . )  = 

~(~) = 

SC(n) = 

OS(n) = 

~(~o, n)= 

re(n) = 

T h e o r e m  2. For  

[ - n , n ] x [ - n , n ]  

( - n ,  n) x ( - -n ,  n ) =  interior of S(n) 

N2\S(n) = complement  of S(n) 

(topological)  boundary  of S(n) 

Por{ O ~ SO(n)in 5P(q~) } 

r n) = P~{O ~ S~(n) } 

0 ~ ~o 1 < ~o 2 ~ 2~z there exist constants 0 < Ci = 
Ci((p~, q~2, (r < ~ such that  

O(p, ~o,) 
O(p, p2)<~C2(p-pc)  c3, p>p~. (1.6) 

~(17, (Pl) 
(~02 - - ' - ' ' - ~  ~ ~(g/, C4n C5 (1.7) 

Moreover ,  for some 0 < Ci = Ci(~f) < oe 

0~<q~<2~ (1.8) 
O(p, ~ ) 
O(p) C6( p -- pc) c7 uniformly in p > Pc, 

((n, <p) ~< C8n_C9 uniformly in 0 ~< ~o < 2~ 
~(n) 

and 

(1.9) 
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Remark 1. If one assumes that 

1 
fl(rp) := lira log O(p, O) exists 

p+p,, log(p - Pc.) 

Kesten and Zhang 

then (1.6) and (1.8) say that fl(q~) is strictly decreasing in (p on [0, 2n), with 
a jump at 2n. Relations (1.7) and (1.9) have a similar interpretation for 

({.10) 

provided this limit exists. 

1 log~(n,  ~o) lim ~og n 
n ~ c o  

Remark 2. If the limits in (1.10) exist, they depend on the imbedding 
of N into R 2. For example, (1.7) implies that 

Por{O ~ S'(n) in the first quadrant} 

has different asymptotic behavior for the two imbeddings of the triangular 
lattice shown in Figs. la and lb. 

? 

(a) 

\ \ \ ' , , ,  
\ \  

(b) 

Fig, 1. 
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In fact, ~(n, ~/2) for the imbedding of Fig. lb corresponds to ~(n, ~/3) 
for the imbedding of Fig. la. It is not clear how one should define a limit 
analogous to (1.10) that is independent of the imbedding. It is even less 
clear that universality of the ~0 dependence will hold for these limits, once 
one has a good definition. J .T.  Chayes and L. Chayes (private com- 
munication) have suggested that the definitions given above will lead to 
universality, provided the graphs can be imbedded in such a way that the x 
and y axis are axes of symmetry and 

Per { the left and right edges of the square S(n) are 

connected by an occupied path in S(n)} ~ �89 (n --* oo) 

and the same limit holds for connections between the top and the bottom 
edge. 

Remark 3. For f # = 2  2 , /3(~z) should equal the exponent /3, of 
Christou and Stinchcombe (4) for the percolation probability of sites near 
the edge for percolation in a half-plane. Various approximations for/3s are 
given in Ref. 4. 

Remark 4. Results quite similar to Theorems 1 and 2 hold when 
5f(cp) is replaced by the more general sector 

Y(~0, q~o):= {(x, y):x=rcos O, y =  r sin 0 for some r ~> 0, ~Oo~< 0~< ~0o+ (p} 

in the definitions. 

2. P R O O F  OF T H E O R E M  1 FOR SITE P E R C O L A T I O N  ON y2 

For simplicity we always take (# = 77 2 in this section. This is the special 
example mentioned in the introduction. In the next section we explain what 
additional arguments are needed to cover more general situations. 

The proof of (1.1) in Ref. 1 was based on the differential inequality 

O(p) <!  [02(p) + O(p) 0'(p)] (2.]) 
P 

We shall obtain (1.5) by improving (2.1) to 

O(p)<~; [O2(p)+O(p)O'(p)(p-pc)~], P>Pc (2.2) 

for some e > 0. Clearly, (2.2) will imply (1.5) with/3 = 1 - e .  As explained in 
Remark 5, it is easy to see that (2.2) will follow once we have Proposition 1 



1036 Kesten and Zhang 

below. Here a circuit on f9* is a path (Vo, e*, Ul,... , e*, v,) on ~* with 
viCvj for all iC j ,  except for Vo=V~ (see Ref. 7, pp. 11 and 29 for details). 

P r o p o s i t i o n  1. Let x be a vertex of f# (and hence of ~*)  and cg, a 
circuit on N* through x, with all its vertices other than x vacant. Then for 
p > p,. and p - p,. sufficiently small 

Pp{3 two disjoint occupied paths on N from neighbors 

o f x  to oo and outside cg, } 

2 
<~- ( p -  pc) ~ O(p) Pp{3 a n  occupied path on a3 from 

P 
a neighbor o fx  to oo and outside ~*} (2.3) 

Remark 5. To obtain (2.2) from this, one follows the proof of Ref. !. 
The x will be the last pivotal point (or the last articulation point) for the 
event {O--* oo } if and only if there exists a circuit C* on f#* through x 
with O in its interior and with all its vertices other than x vacant, and if, in 
addition, there exist three disjoint occupied paths on f#, one from O to a 
neighbor of x in the interior of C* and two from a neighbor of x to m in 
the exterior of C*. By taking C* to be a minimal circuit through x with O 
in its interior and with all its vertices other than x vacant, we can apply 
Lemma 1 instead of Eqs. (11) and (12) in Ref. 1 to estimate for fixed oK, 

Pp{x is the last pivotal site for the event O ~ oo 

and the above minimal circuit C* equals ~*  } 

= Pp{a neighbor of x is connected to O inside cg, 

and ~* is minimal vacant circuit through x and 

surrounding O (except possibly at x)} 

�9 Pp{3 two disjoint occupied paths from neighbors of 

x to o% outside cg, } 

<~ Pp{x is pivotal for the event O --, oo and the minimal 

2 
circuit C* equals ~* } P (p - p,,)~ O(p) 

After summing over all possibilities ~*  for C*, one can complete the proof 
of (2.2) exactly as in Ref. 1. II 

Unfortunately, we must become more technical to explain the proof of 
Proposition 1. First we need the crossing probabilities of rectangles. On 
N = Z  2 an occupied horizontal crossing (or occupied crossing in the 
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1-direction) of the rectangle [al ,  a23 • [bl, b2] (ai, bie2-) is an occupied 
path (Vo, el,..., en, vn) on (ff with v0 on the left edge {al } x [bl,  b2] and v,, 
on the right edge {a2} x [b~, b2], while all other vertices vi, 1 ~< i<~n-1,  
lie in the interior (al ,a2)X(bl ,b2) .  Occupied vertical crossings (or 
occupied crossings in the 2-direction) on (q are defined similarly. Finally, 
vacant crossings on N* are defined by replacing "occupied path on (q" by 
"vacant path on N*." Now define for i = 1, 2 

~((a, b); i, p) 

= a((a, b); i, p, fr 

-= P p { 3  occupied crossing on fr of [0, a] x [a, b] in the/-direction} 

(2.4) 
o'*((a, b); i, p) 

= a*((a, b); i, p, fr 

= _Pp{~ vacant crossing on fr of [0, a] x [-0, b] in the/-direction} 

(2.5) 

The principal fact we need is that crossing probabilities of rectangles 
that are not too large (with respect to the correlation length) nor too 
elongated are bounded away from zero. To make this precise, we first 
define the correlation length 

L(p) :=min{n:a( (n ,n) ;1 ,  p)>>-l-eo, P>Pc  

Here eo is some small, strictly positive number whose precise value is not 
important here. The most important property is that e o > 0 can be chosen 
such that there exist constants c5~ for which 

a((kn, n); 1, p) >~ ilk, a((n, kn); 2, p) >~ c3~ 
(2.6) 

a*((kn, n); 1, p) >~ (~k, a*((n, kn); 2, p) >>- cSk 

uniformly in n <~ L(p) (for any fixed k/> 1 ). It is shown in Ref. 8, Section 2 
that such a choice of e0 is possible, and Corollary 2 of Ref. 8 also justifies 
calling L(p) the correlation length (see also Ref. 2, Proposition 3.2 for 
another justification). Note that the continuity of a in p implies that for 
p=p, . ,  (2.6) will hold uniformly for all n. This can also be proved 
directly. (I~ Thus, at Pc the correlation length should be taken as infinity. 
In fact, the correlation length diverges as p ~ Pc., and another important 
property we shall need is 

L(p)>>, C 1 [ p - p , [ - 1  (2.7) 

822/46/5-6-16 
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for some C1>0.  Equations (4.5) and (4.6) of Ref. 8 imply L(p)>~ 
C1 [p-Pc[  ~/a, which would suffice for our purposes here, but Chayes et 
all. (31 have given a much more direct and simple argument for (2.7). Finally, 
we note that if one combines four crossings to construct a circuit in an 
annulus as in Refs. 10-12, then one obtains for k >/2 

Pp{~ occupied circuit on ~ surrounding S(n)in S(kn)\S(n)} 

>~(64) 4, n<~L(p) (2.8) 

Pp{3 vacant circuit on c5" surrounding S(n) in S(kn)\S(n)} 

> (64) 4, n <~ L(p) (2.9) 

We note here that one easily obtains from (2.9) that for p = Pc there are 
infinitely many vacant circuits surrounding O, a.e., [Per]; this implies 
0(pc)=0 (compare Refs. 10 and 11 or Ref. 7, p. 178). 

Another ingredient of our proof is an inequality for "disjoint 
occurrence of two events." A first version of this was proved by 
Hammersley (s) [cf. Refi 5, Eq. (25)], and the method of proof has been 
rediscovered repeatedly (see Ref. 13 for references). To formulate the 
inequality, we have to bring in an independent copy of our percolation 
system. More specifically, let r be the vertex set of ~ and set 

t 2 = t 2 ' =  1~ { - 1 ,  +1} 
v E , /~ 

A typical point co (~9') of s (s is a sequence {co(v)}v~ ~ ({co'(v)}v~ , ) .  
The value co(v)= +1 ( - 1 )  corresponds to v being occupied (vacant). Pp is 
the product measure on f2 with 

t We define Pp in the same way as the product measure on (2' with 

P;{oJ(v) = +1} = p =  1 - P.{~o'(~) = -1}  

For any event B c ~2 write B' for its copy in (2', i.e., 

B ' =  {co' e f2': 3cocBsuchthatco'(v)=cn(v)forallve~U} (2.10) 

For a fixed o5 e t'2 and K c  ~ ,  [eS]~c denotes the cylinder 

[cS]K = {o9 e ~: (9(v)= &(v), veK} 

Similarly for fixed ch'e g2' 

[~ '3,~= {~' e ~ ' :  co'(v)= ~'(v), veK} 
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We say that two events A and B of (2 occur disjointly if A o B occurs, where 

A o B := {co e (2: 3K, L c r such that Kc~ L = 

and [ co ]KcA,  [ c o ] L o B }  

This terminology should be reasonably intuitive; we interpret [co]K c A as 
"A occurs because of the coordinates of co in K"; A o B then is the event 
that A and B occur because of disjoint sets of coordinates. We define in a 
similar way for two events A in f2 and B' in f2' the event A o B' in f2 x f2' by 

A o B' = {(co, co') ~ (2 x s 3K, L c ~U such that 

K ~ L = ~ a n d  [ c o ] x c A ,  Eco ' ]cc  B'} 

We state the desired inequality as a separate lemma. 

k e m m a  2. If A and B are increasing events of O, each depending 
on finitely many coordinates only, and B' is the copy of B in f2' as defined 
in (2.10), then 

Pp{Ao B} <~ Pp x p'p{Ao B'} (2.11) 

(Here Pp • 19'p iS the product measure of Pp and P~ on f2 x f2'.) 

ProoL We can represent the increasing event A as a finite union 
U A~, with A~ of the form 

Ai= {coes co(v) = 1 forv~Ki} 

The cylinders A s can be chosen maximal, or equivalently the Ki a U can be 
chosen minimal, with the property A i c  A. If B is also written as a union 
U Bj of maximal cylinders in B, with 

Bj = {co e t2: co(v) = 1 for v e Lj} 

then it is easy to see that (~3) 

A o B =  ~ (Aio Bj) = U (Ai~ = ~ (AinBj) 
i , j  i , j  i , j  

Kic~ Lj=.(3 Kin  L j = , ~  

Therefore, (2.11) is immediate from the inequality (3.6) in Ref. 13. [Instead 
of (3.6) in Ref. 13 one can also use the results of Campanino and Russo, 
McDiarmid, or Rfischendorf cited there.] II 

We can now outline the proof of (2.3), at least when the restriction 
that the paths lie outside ~*  is dropped. (This can be viewed as a 
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degenerate case when cg, consists of the vertex x only.) By periodicity we 
may assume x =  O. Let ~ be the annulus S (T ) \S (U  1). An O-occupied 
(O'-occupied) path is a path (Vo, e ~ ..... e~,v~) on ~f with ~o(v~)=l 
[co'(vz) = 1 ] for 0 ~< i ~< n. Now let 

and let 

= {3 an f2-0ccupied circuit surrounding S(23j-~ ) in 

d3j and an ~2-0ccupied circuit surrounding S(23j+ 1) 

in ~r 2 } (2.12) 

J = {j >~ 1:2 3j+ 2 ~< L(p) and ~ occurs } 

d o' and J '  are defined in the same way for g?'-occupied circuits, and we 
further define 

N = cardinality of J r J '  

Our first step will be the easy estimate 

Pp x Pp{ N..~ - C  2 log(p - Pc)} <~ 1/2 (2.13) 

for a suitable C2 > 0 and p - Pc sufficiently small. We now take 

A --- B = {a neighbor of O is connected to oo by an 

occupied path outside cg,} (2.14) 

The left-hand side of (2.3) is now Pp{A o B}. Even though A and B depend 
on infinitely many sites, Lemma 2 and an obvious limit procedure show 
that the left-hand side of (2.3) is at most 

PpXPp{AoB'}<~ZPpXPp{AoB'andN>~ - C 2 1 o g ( p - p c ) }  (2.15) 

The inequality here follows from (2.13) and the Harr is-FKG inequality 
(Ref. 7, Proposition4.1) because AoB' and { N ~ > - C 2 1 o g ( p - p , . ) }  are 
both increasing events in g2 x ~ ' .  We shall estimate (2.15) by conditioning 
on J, J' and on certain circuits in rigs and ~3j + 2, J e J c~ J'. When ~ occurs, 
let cg3s be the smallest ~2-occupied circuit surrounding S(23s 1) in s~c3j, and 
N3s+ 2 the largest D-occupied circuit surrounding S(23j+~) in suc3j + 2- Define 
~gj and @j in a similar way as extremal f2'-occupied circuits when gj occurs 
(see Fig. 2 for an illustration when gsc~g) occurs). The existence of such 
smallest circuits cgi, cg; and largest circuits ~ ,  ~ ;  can be demonstrated by 
the method of Lemma 1 of Ref. 6 or Proposition 2.3 of Ref. 7. For any cir- 
cuit cg define 

= interior of ~, cge = exterior of ~, ~ = c~ u cg 
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Fig. 2. Illustration of ~ c a ~ .  The squares (starting at the innermost square, but not drawn 
to scale) are S(23j- 1), S(23J), S(23j+ 1), and S(2 )i+ 2). The solid circuits are cg3j and ~3j+ 2 and 
the dashed circuits are (g;j and .@~/+2- 

Then on ~ we necessarily have ~f3sc ~3j+2, and it follows from the method 
of Lemma 1 in Ref. 6 or Proposition 2.3 in Ref. 7 that conditionally on ~,  
cg3j, and N3s+ 2 the families 

and 

{~,(,~): ~ ~ ~4~j + 2 n % }  (2.16) 

are independent. Moreover, the conditional distribution of the family in 
(2.16) is equal to the unconditional distribution Pp. Now condition on the 
set of indices J and the occupied circuits ~3s, ~3s+2, J~J. For the time 
being drop the restriction concerning ~*  in (2.3) and in (2.14). Let J con- 
sist of j ( 1 ) < j ( 2 ) <  -'- < j(v). Then A occurs if and only if there exist the 
following collection of g2-occupied paths (see Fig. 3): 

an s path ro from a neighbor of O to ~g3s(~) that 
lies in @3s(1) except for its endpoint on rg3j(t ) (2.17) 

an Q-occupied path sj(i) from c#3j(0 to @3j(0+2 that lies in 
o e 

@3j(i)+2r~ cg3su) except for its endpoints on <g3su) and 
~3jU)+2, i=  1 ..... v (2.18) 
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Fig. 3, Given the occupied Cs and ~'s, a neighbor of O is connected to ~c if and only if 
there exist occupied paths rjl 0 and s/l~) as indicated. Note that the endpoint u of r 0 on ~3/iz) 
and the initial point v of sji~) are connected by a piece of ~3/~). 

an Q-occupied path rj(i)from ~3j(0+ 2 to cg3j(~ + 1) that lies in 
o e 

cg3/l/+x)n@3j(~)+ 2 except for its endpoints on ~3j(i+1) 
and ~3:(i)+ 2, i = 1,..., v - 1 (2.19) 

an Q-occupied path rj(v) from ~3/(v)+2 to oe in @~/iv)+2 
except for its initial point  on ~3j(v)+2 (2.20) 

It is obvious that  such O-occupied paths must  exist for A to occur. In the 
opposite direction, once such paths exist, they can be connected by pieces 
of the s circuits cg3j and ~3j+2 to make an D-occupied path from 
a neighbor of  O to oc (see Fig. 3). In exactly the same way, we see that  B'  
occurs if and only if there exist s paths r'(i) and s'(i) as in 
(2.17)-(2.20) with :g and ~ replaced by :g' and ~ '  and j ( i )  by j '(i). For  
A o B' to occur, we must  even be able to pick the {rj(i), Sj(i) } disjoint from 
the {r~,(i~, S}'(g)}. We shall only insist on s: being disjoint from S: when j E  
J ~  J ' .  This then leads to the following inequality whenever the cardinality 
of J ~  J '  is at least - C2 log(p - p,) :  
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Pp x P'p { A o B' and N ~> - C2 log(p - p,,) I J, J', ~3;(i), ~3j(,) + 2, 

j ( i )~J,  V{t}, 3/{t)+2, J'(l) EJ' } 
<. Pp x P'p{ro, rj{o, sj( o exist as in (2.17)-(2.20) 

and their analogues rS, rj,(o, and s},(o exist 

in such a way that sj is disjoint from sj when 

j 6 J c~ J' ] J, J', (~3j(i), ~3j(i)+ 2, j( i) 6 J, 

r ~;f{,)+ 2, j ' (1)6J'} (2.21) 

When J63J' contains fewer than - C 2  l o g ( p - p c )  indices, then the left- 
hand side of (2.21) is zero. Now, by the independence statement at (2.16) 
and its analogue for primed quantities, the right-hand side of (2.21) can be 
written as the product of the following five factors: 

Pp{all the r's required by (2.17), (2.19), (2.20) 

exist I J, %j(~}, ~3j{~} + 2, j(i) e J} (2.22) 

H Pp{sj exists as required by (2.18)1./, ~3~, ~3j+2} (2.23) 
jEJXJ'  

Pp{all the r' required by the analogous of (2.17), (2.19), 

and (2.20) exist I J', cg~;(t), ~;j,(l)+ 2, j'(l) ~ J'} (2.24) 

P'p{SJ' exists as resuired by the analogue of 
/' EJ'XJ 

! ! 
( 2 . 1 8 ) l J ' ,  C~3j,, ~3 j ,  + 2} (2.25) 

I !  Pp x P'p{sj and sj exist and can be chosen 

disjoint I J, J', %j, ~3j +2, (g3j, @' 3j+2} (2.26) 

Assume now that we can prove the following estimate for some constant 
0~<2<1:  

P.o x Pp{sj and s; exist and can be chosen disjoint I J, J', 

<<. 2Pp{sj as required in (2.18) exists ] J, cg3j, ~3j+ 2 } 

.Pp{Sj as required by the analogue of (2.18) 

exists I J', ~g;j, ~ ; j+  2} (2.27) 
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We then obtain that 

Pp • Up{Ao B and U>~ -C2  log(p - p,.) } 

~< [product of(2.22) (2.25)] 2 -C21~ p') 

1~ Pp{sj as required in (2.18) exist I J, cg3j, ~3j+2} 
j ~ J ~ J '  

H Pp{sj as required by the analogue of (2.18) 
jcJc~J' 

exists ] J', c~y, ~ j  +2 } 

= ) .  C 2 log(p - -  Pr ]J, c~3j(i), ~3jti)+ 2, j(i) ~ J} 

" P'p { B' I J', cg'3j(,), ~'3j'(,) + 2, j '  (1) ~ J' } 

Taking expectations with respect to J, J '  and all the c~, ~,  cg,, and ~ ' ,  we 
finally get 

P p { A o B }  ~<22 c21~ Up{F}  

2 <~ _ (p _ p,.)c2 Ilog ;-i 
P 

�9 Pp{a neighbor of O is connected to oo } O(p) (2.28) 

since 

P'p{B'} = Pp{B} <1_ O(p) 
P 

To complete the proof of (2.3) without the restriction concerning c(. 
we must therefore prove (2.13) and (2.27), which we do in the next two 
lemmas. 

L o m m a  3. The result (2.13) holds. 

Proof. This is easy by virtue of (2.8) and the independence of the 6o 
and the co' 

Ppx ;{4 e;} = > (64) 

In addition, the number o f j  with 23j+2 ~< L(p)  is at least - C  3 l o g ( p -  p,), 
by virtue of (2.7). Since the ~ c~ Ej, j =  1, 2 ..... are independent, (2.13) now 
follows with 

C~ = �89 C3 

from Chebyshev's inequality for the binomial distribution, provided L(p)  is 
sufficiently large (or equivalently p sufficiently close to Pc). | 
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-% 

l/! / ~'\'~ "k f 

/ Ir /I I 
. - z . . f  ~, 

Fig. 4. 
~3j+2). Any occupied connection from cg3j to ~3j+2 has to lie between t* and t*. Only R is 
shown, but not KI, K2. 

(--)  Q-Occupied paths and ( - )  Q-vacant paths (except at endpoints on cg3j and 

i . e m m a  4. The result (2.27) is valid. 

Proof. Clearly it suffices to prove 

PpXP'p{there exist an O-occupied connection sj as 
required in (2.18) and an O'-occupied connection sj 
from cg;~ to ~;j+2 as in the analogue of (2.18), but any 
two such sj and sj intersectlJ, J', ~3j, ~3j+2, (~3j, 
~;j+2} > C 4 > 0  (2.29) 

(We can then take 2 =  1 -  C4.) To prove (2.29), we show that there is a 
strictly positive probability that sj exists, but that it is forced to pass 
through a certain corridor K, and similarly for sj and a corridor K'. 
Moreover, we choose these corridors such that any s j c  K and s jc  K' must 
intersect. For instance, we can take K =  [232 1, 23J+2] • [ _ 2 3 J  I, 2 3 j - 1 ]  

by assuming the existence of an O-occupied path ~ connecting ~3j to N3j+ 2, 
two O-vacant paths t*, t* on ~* (in obvious terminology) connecting ~3j 
to ~3j+2, and an O-vacant path t* connecting t* to t* in d3i+i as 
indicated in Fig. 4 (the endpoints of t~', t~' on cg3j and ~3j+2 will not be 



1046 Kesten and Zhang 

vacant). The paths t*, ~, and t* in Fig. 4 are pieces of horizontal crossings 
of 

Kl := [23s  1 , 2 3 j + Z ] x [ _ 2 3 j - l , _ 2 3 j  i+2~j 2] 

k := [23J- 1, 23J+2] x [_23J -  1+ 23J 2, 23J- 1 _ 23~-2 ] 

K2 := [23j- 1, 23J+23 X [23j 1 _ 23j-2, 23J-~3 

respectively, d can serve as s s in this situation, but no occupied sj can inter- 
sect any of the vacant paths t*, t*, t*, and therefore any such sj must lie 
"between t* and t 2. It is easy to see that given ~3j and ~3/+2, the 
probability of the occurrence of g, t*, tf', t* as above in the O-system is at 
least 

Pp {_q occupied horizontal crossing of/~) 

�9 Pp{3 vacant horizontal crossing ofK~ } 

�9 Pp { 3 vacant horizontal crossing of K2 ) 

"Pp{3 vacant  circuit in ~r ~ surrounding S(2 3j) } 

~.  ( 6 1 6 ) 3 ( 6 4 )  4 (2.30) 

[by (2.6), (2.9), and the Harris-FKG inequality]. We do not write out the 
details for the corridor K', but Fig. 5 should convince the reader that the 

I I I 

f 
I 

I 

; 
III 

I 
I 

Fig. 5. ( - - )  g2'-Occupied paths and ( - - )  f2'-vacant paths (except at their endpoints on %'i~/ 
and N;s+2)- ( - ) A candidate path for sj. Any such path must intersect the ,i of Fig. 4. 
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existence of suitable f2'-vacant paths will force sj to contain an g2'-occupied 
vertical crossing of [23j, 23j+ t] x [ - 2 3 j -  1, 23j-1]. Any such sj must inter- 
sect any sj connecting ~3j to ~3j+2 in the situation of Fig. 4. We leave it to 
the reader to verify that the existence of paths such as in Fig. 5 has a con- 

! t ! ditional Pp probability (given c.g3j and ~3j+2) that is bounded away from 
zero. This, together with (2.30) and the independence of the f2 and f2' 
systems, implies (2.29). | 

Proof of Proposition I. We now show what changes have to be 
made in the proof of (2.3) in the general case when the restriction of the 
paths to the exterior of cg. is imposed. Again we assume x = O. We define 
A and B as in (2.14). We also define 

i o = max { i: cg. intersects 0S(2 i) } 

where OS(n) denotes the (topological) boundary of S(n). We deal 
separately with the two cases 

i0 _< log L(p) (2.31 ) 
"~ 21og2 

and [cf. (2.7)] 

io > log L(p) >~ C5 log(p - p,.)- i _ C6 (2.32) 
2 log 2 

If (2.31) holds, we can use essentially the same proof as before. We 
define gj again by (2.12), but only for 3)'> i o + 1, and simularly for g;. Also, 
cg3j, ~g;j, ~3j+2, and ~; j+2 are defined as before, as long as 3 j> io + 1. This 
time we take 

J =  {j: 3 j> i o + 1, 23j+2 ~< L(p), and ~ occurs} 

J ' =  {j': 3 j '>  io + i, 23j'+2 ~< L(p), and g~., occurs} 

N is still the cardinality of J N  J ' ,  and the rest of the proof needs no change. 
We merely need to observe that (2.13) still holds, by the same proof as in 
Lemma 3, because the number o f j  with 3)'> i 0 + 1, 2 3j+2 <<.L(p) is still at 
1east - - C  3 l og (p -p , . )  if (2.31) holds. 

If (2.32) holds, we use simply 

Pp{Ao B} <<. PpX P'p{Ao B'} <~ PpX Pp{A c~B'} = Pp{A } P'p{B'} 

(by Lemma 2 and A o B' c A x B), and then we prove 

P'p{B'}=Pp{B}<~2(p-P,.)~O(P), P>Pc (2.33) 
P 
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Clearly these two inequalities will imply (2.3), so that it suffices to prove 
(2.33). Note that by (2.14), Pp{B} is the probability that a neighbor of O is 
connected to oe outside c#,, while p lO(p) is the probability that a 
neighbor of O is connected to ~ .  Thus, (2.33) says that [under (2.32)] the 
restriction on the connecting path to lie outside cg, cuts down the 
probability by a factor 2 ( p -  p y .  

We can ignore the f2 system for (2.33). We therefore do not need ~,  
but we define gj as before if 3j~< i 0 -  2. Thus we set, analogously to (2.12), 
for 3j~< i o -  2, 

gj = {3 an t2'-occupied circuit surrounding S(23j- 1) 

in d3j and an f2'-occupied circuit surrounding 

S(23s+ 1) in d3s+ 2} 

J ' =  {j: j~> 1, 3 j~  i o -  2, 23s+2 ~< L(p), and g} occurs } 

On g j, ~'3s is the smallest f2'-occupied circuit in d3j that surrounds 
S(23J-1), while ~; j+2 is the largest f2'-occupied circuit in ~r that 
surrounds S(23j+1). All this is entirely the same as before. Again, if B' 
occurs, then there must exist paths as in (2.17) (2.20), now with primes 
attached to the appropriate entities, and with the added requirement that 
all these paths lie outside (g*. Consequently, P'p{B'tJ', ~ j ,  9 '  3j+2,j~J'} is 
bounded by the product of the following two factors: 

Up{all the r' paths required by the analogues of (2.17), 

(2.19), (2.20)existIJ',Cg'3j{il, Y3j{~+2),j(i)eJ ' } (2.34) 

[ I  {3 (2'-occupied path sj from cg~j to ~ j + 2  
j c J '  

~  t e that lies in ~*~ ca N3j+2 ca (~3j) except for 

its endpoints on ~f3J' and ~3j+ 2 I J ' , '  ~g;j, ~'3j+2} 

One can now complete the proof of (2.3) almost as before, if one proves the 
following analogues of (2.13) and (2.27): 

P'p{cardinality of J'~< -C2  log(p - Pc)} ~< �89 (2.36) 

and there exists a constant 2 < 1 such that 

P~,{3 t2'-occupied path sj from ~;j  to 9 ; j+  2 that lies 
~ / r in g*e n 93j+2 ca (g3j) except for its endpoints 

on ,~;j and 9~j+2]J '  , g~j, 9~j+2 } 
~< 2Pp { 3 12'-occupied path s} from (g;s to 9 ;s + 2 that 

~ ! e lies in 9! ,  + 2 m (g3j)  except for its endpoints on 

g; j  and 9;j+21J',  cg;s, 9 3 j + 2 }  (2.37) 
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[Note that the left- and right-hand sides of (2.37) differ only in the restric- 
tion sj c ~q,e.] TO obtain (2.3), or rather (2.33), from these we merely have 
to observe that still 

P'p{r'o, r~, and sj exist as required by the analogues of 

(2.17) (2.20) for the s system/J, ~;j,  ~'3j+2, JeJ ' }  
~< Pp{3 f2'-occupied path from a neighbor of O 

t ! to oo I J', c~3j , ~3j+ 2, jE J'} 

(with all the conditions that the paths lie outside ~* dropped on both 
sides). 

The proof of (2.13) can be copied almost verbatim for (2.36) [recall 
that we assume (2.32) now]. 

Finally we prove (2.37). Its left-hand side is at most 

P'p{3 f2'-occupied path sj from <g;j to ~;j+2 that does 

not intersect oK, ]j,, cg;j, ~; j+2} 

Note also that there exists an f2'-occupied path from cg;j to ~; j+2 that 
(with the exception of its endpoints) lies in ~ ~3j+2c a (~ j )e  if and only if 
there exists any f2'-occupied path from ~;j  to ~;j+2- As in (2.29) it 
therefore suffices to prove 

P'p{30'-occupied path sj from <g;j to N;j+2, but all 

such paths intersect ~* I J', ~;j ,  ~ ; j+  2 } ~> C4 > 0 (2.38) 

and the proof of (2.38) is analogous to that of (2.29). This time we prove 
(2.38) by forcing sj to lie between O'-vacant paths in such a way that sj 
must cross cg,. The choice of these f2'-vacant paths depends on cg,. Note 
that 3j+2~<i0,  so that there exists a piece p* of ~* that connects O to 
63S(23J+ l). Afortiori p* crosses sr 1 (see Figs. 6 and 7). If p* ~ sr + 1 con- 
tains a vertical crossing of T := [23j, 23j+ 1] x [-23~, 23J] as in Fig. 6, then 
s~ is forced to intersect p* as soon as there exist f2'-vacant horizontal 
crossings tf' of 

T1 := [23J, 23i+1] • [_23J, _23Jq_23J 2] 

and t~ of 

T2 := [23j, 23j+13 x [23J-- 23J 2, 23J3 

and an f2'-vacant connection t* of t* and t~' in d3j+ 1\ i?, where 

T-=- [23j, 23j+1] • [ --23J+23j-2,  23J_23J -2-] 
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Fig. 6. 

S(2 3 j + l  ) 

! 
! 

Illustration of Q'-vacant paths t~, t~, t* that force s} to intersect p*, where p* con- 
tains a vertical crossing of T. ( - ) The path p*. 

(Note that T =  T l u T u  T2. ) In this situation (2.38) follows by an estimate 
similar to (2.30). The same argument works if p* contains a horizontal 
crossing of T(rc/2) or T(3rc/2), or a vertical crossing of T(z), where T(q) is 
the image of T after (counterclockwise) rotation over an angle ~0. 

If p* does not contain a crossing as above of any of T, T(~/2), T(rc), 
or T(3~/2), then one easily checks that p* cannot intersect T as well as 

Fig. 7. 

I/II 
33 

[ \ 

', 0 
\k 

f 

s ! ' / ,  

x 

jI 

I 
I 

// 

Illustration of s paths t*, t~, t* that force sj to intersect p*, where p* does 
not intersect T(~)w T(3~/2). ( - ) The path p*. (--)  A possible s~. 
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T(Tz), nor T(z/2) as well as T(3~/2). [E.g., in the first case p* would have 
to cross T(rt/2) or T(37r/2).] In particular, p* can intersect only two of the 
four rectangles. Assume, for the sake of argument, that p* does not inter- 
sect T(rr) w T(3~/2), so that p* contains a piece that connects the union of 
the top and right edges of S(2 3j) with ~S(2 3j+l) in d3j+ 1\ T(Tz)t.3 T(3rc/2). 
Figure 7 now illustrates how one can choose f2'-vacant paths t*, t*, and t* 
to force sj to wind around from T(3rc/2) to T(3~z/2) so that it must intersect 
p*. We leave it to the reader to show that the Pp-probability for the 
existence of paths t*, t*, t*, and sj is bounded away from zero [by virtue 
of (2.6)], so that (2.38) holds in all situations. | 

3. C O M M E N T S  ON T H E  R E M A I N I N G  P R O O F S  

C o m m e n t s  t o  T h e o r e m  1. What goes wrong with the proof of 
Section 2 when N is not 22? Nothing, as long as f~ is planar. However, if 
is nonplanar, the proofs of Lemma 4 and (2.37) break down, because s) 
may cross s / o r  p* without having a vertex in common with sj or p*. Such 
intersections of paths are allowed in AoB'. For  A and B' to occur 
disjointly, we merely require that they occur because of disjoint collections 
of sites of f#. The proof of Theorem 1 does, however, go through essentially 
unchanged for any planar graph f4. Only very minor technicalities may 
need to be changed for a planar f# that is not 22, due to the fact that a 
horizontal crossing of [al, a2]X[bl,b2] with ai, bi~2 does not 
necessarily have its endpoints on the left and right edges of this rectangle. 
Such a crossing will therefore be a path from [a l -A ,  a t ]  x [bl,b2] to 
[a2, a2+A] x [b l ,b2 ]  for some constant A=A(f#)  (which is an upper 
bound for the lengths of the edges of f#). The arguments in Ref. 7 have been 
carried out in this generality, and we shall regard the case of planar f# as 
proven, without going into further technicalities. The restriction to planar 
f# is, however, serious. It would rule out, for instance, the matching graph 
of 22 and the covering graph of 22 . The latter corresponds to bond per- 
colation on Z 2 (see Ref. 7, Sections 3.1 and 2.5). 

It is easy to save (2.3) by going over to the planar modification fgpl of 
as explained in Ref. 7, Section 2.3. This is done by adding a so-called cen- 

tral vertex in each face of the mosaic, J/r say, on which (f#, f~*) is based, 
and which is close-packed for f#. These central vertices are taken occupied 
with probability 1. One obtains a similar planar modification fqp*~ by 
inserting a vacant central vertex in all the faces of Jg that are close-packed 
in f#*. Now the proof of Section 2 can be applied to %1 to give us (2.3) on 
fgp~. This does not immediately give us (2.2), though. What we do obtain 
form (2.3) on fgpl, by the proof of Ref. 1, is 
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O(p) <2 I02(p) + (p_ pc)~ O(p). ~ Pp{tWO neighbors of 
P x G ~r 
X are connected by occupied paths on ~p~ to O 

and oo, respectively, and there exists a circuit cg, 

on ff~'~ all of whose vertices other than x are 

and O e interior of cg, }] vacant, 
3 

(3.1) 

(compare Ref. 7, Proposition 2.1). Any vertex x of (~pl with the properties 
between the braces on the right-hand side of (3.l) is pivotal for the event 
{O + oo }. However, the sum over x on the right-hand side of (3.1) is not 
equal to O'(p) [as was the case in Ref. 1, Eq. (7) and following lines]. O'(p) 
is only the sum over those x that are vertices of N itself, since the other 
(central) vertices of ffp: are always occupied--the status of these latter ver- 
tices is not influenced by p [compare Eq. (4.22) in Ref. 7]. We nevertheless 
will obtain a version (2.2) by showing that if x is a central vertex of Np~ in 
the face F of the mosaic J{  on which (N, (r is based, then there exists a 
vertex y of ~ on the perimeter of F such that 

Pp{X has the properties in (3.1)} 

<~ C7 ~_p Pp{y has the properties in (3.1)} (3.2) 

where M is an upper bound for the number of vertices on the perimeter of 
any face of ~r Thus, (3.1) yields 

O(P) <~ ~ IO2(p) + Cs ( I@p) M (P- P<)~ O(P) 

~, Pp{yis pivotal for {O ~ c~}] 
),' ~ A 

~<- 
P 

This will be enough to imply Theorem 1; the factor [p/(1-p)] M is 
harmless, since we only have to consider p close to p~. ~ (0, 1). 

Proof of (3.2). This is quite simple, for let x be the central vertex of 
F and let rl -- (Vo, el ..... e,,  O) be an occupied path on ~pl from a neighbor 
Vo of x on aJpl to O, and r 2 = (Uo, fl,. . .) an occupied path from a neighbor of 
x to ao. Also, let c g , = ( x , g ~ , w ,  ..... w* 1, g * , x )  be a circuit on ajp* 
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Fig.  8. 

4e 
Wm_ 1 

r 2 

r ]  

A face  F w i t h  a c e n t r a l  v e r t e x  x p i v o t a l  for  {O ~ oo }. 

surrounding O and vacant, except at x. Then re, Uo, w?, w*_~ must be 
vertices of Jg (and hence of N and N*) on the perimeter of F such that w* 
and Wm_* 1 separate v 0 and Uo (see Fig. 8). If all occupied vertices other than 
Uo on the arc of the perimeter of F from w* to w* j through Uo are made 
vacant (in Fig. 8 this can only be the vertex z), then u0 becomes pivotal for 
{O--*~} .  Indeed, if w* and * Wm--1 are the only points of ~*  on the 
perimeter of F, then we can replace (8" by the new circuit going from Uo to 

�9 and then retur- w* along the perimeter of F, continuing along c( ,  to Wm ~, 
ning to Uo along the perimeter of F. In general we can do this by replacing 

�9 w* is a maximal piece of c~, w* and w* by w* and w*, where wk+l ..... m - -  1 -- 1 

between w~ and w'm_1 that does not intersect the perimeter of F. Thus, if x 
is pivotal for { O ~ ~ }, then we can make a y on the perimeter of F pivotal 
by changing at most M vertices from occupied to vacant. (3.2) is immediate 
from this (cf. Ref. 9, Proposition 8). II 

C o m m e n t s  t o  T h e o r e m  2. The form of the proof is very similar 
to that of Proposition 1. Let 0 ~< ~0~ < ~o2 ~ 2re and let Re be the positive x 
axis, and for i =  1, 2 let Ri be the ray 

R i = {(x, y): x = r cos (Pi, Y = r sin ~0i for some r >~ 0} 

Define the event ~ ( i )  as (see Fig. 9) 

~ ( i ) ' =  {3 occupied connection from R o to R e in ~ . n  Y(P2)} 
(3.3) 

= @(3j) c~ J~(3j+  2) 

On ~ we define (s as the "innermost" occupied path with the properties in 
(3.3) for i=3j ,  and ~3j+2 as the "outermost" occupied path with the 
properties in (3.3) for i =  3 j+2 .  Let 

J =  {j~> 1:2 3j+2 ~< L(p)  and gj occurs} 

N = cardinality of J 

822/46/5-6-17 
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Fig, 9. 

/ 

0 

~s(2 i - I  ) 

R 

/ 

S(2 i ) 

~(i )  occurs when the dashed path is occupied. 

Again, for suitable C2 > 0, 

O(p, ~oi)= Pp{ O ~ oo in 5~(~o,)} 

<~2Pp{O --, ov in Y(q~i) and N>~ -C2  log(p-p , . )}  

= 2Ep{Pp{O ~ oo in 5g(q~i) 

andN>~ - C 2 l o g ( p - p , . ) l J , ~ 3 j , ~ 3 j + 2 ,  j e J } }  (3.4) 

On {N< -C2  log(p-p , , )}  the conditional probability in the last member 
of (3.4) vanishes. On {N>~ -C2  l o g ( p -  p,)} with J =  {j( t)  < --- < j(N)} 
this conditional probability equals 

Pp{O + cg3j.(~)in 5P(~oi) } - Pp{~3j(m +2 -+ oo in Y(~0,) } 

I~ Pp{~'3j(l)--+ ~@3j(l)+2 in 5~(~0,) } 

H Pp{~3j(,) + 2 ~ cg3y(,+ 1)in J(qoi) } 
I ~ I < ~ N - - 1  

All probabilities here are calculated with c6' and @ viewed as fixed (i.e., 
nonrandom). One finally obtains (1.6) by proving that there exists a con- 
stant 2 = 2(N, q~l, ~o2)< 1 such that 

Pp{Cg3j~3j+ainS~ <~2Pp{C~3j~@3j+2inS~ (3.5) 
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uniformly  in % ~ sJ3:, ~3j+2 ~ d3j+2,  and  j large enough.  The  p roo f  of 
(3.5) is ana logous  to tha t  of  L e m m a  4. W e  merely  have to show 

Pp{Cg3j ~ ~3s+2 in 5:((p2 ) but  not  in 5:(qol) } >7 C4 > 0 

We give no further  details.  (1.7) follows if one replaces p by  Pc and L ( p )  by 
n in the above  argument .  (1.8) and  (1.9) follow by tak ing  q~2=2~, 
5:(~02) = N2, and  rep lac ing  the res t r ic t ion  that  a pa th  r stay in 5:((p~) by 
the res t r ic t ion  tha t  r m a y  no t  cross the posi t ive x axis. 
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